A New Connected Coherence Tree Algorithm For Image Segmentation

نویسندگان

  • Jingbo Zhou
  • Shangbing Gao
  • Zhong Jin
چکیده

In this paper, we propose a new multi-scale connected coherence tree algorithm (MCCTA) by improving the connected coherence tree algorithm (CCTA). In contrast to many multi-scale image processing algorithms, MCCTA works on multiple scales space of an image and can adaptively change the parameters to capture the coarse and fine level details. Furthermore, we design a Multi-scale Connected Coherence Tree algorithm plus Spectral graph partitioning (MCCTSGP) by combining MCCTA and Spectral graph partitioning in to a new framework. Specifically, the graph nodes are the regions produced by CCTA and the image pixels, and the weights are the affinities between nodes. Then we run a spectral graph partitioning algorithm to partition on the graph which can consider the information both from pixels and regions to improve the quality of segments for providing image segmentation. The experimental results on Berkeley image database demonstrate the accuracy of our algorithm as compared to existing popular methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

An Improved Pixon-Based Approach for Image Segmentation

An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • TIIS

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012